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time-dependent bias: (i) exponential growth and (ii) delays in 
drug effect stabilization. The former can lead to erroneous con-
clusions (e.g., that a drug is increasing in efficacy over time), 
while the latter requires shifting the window of evaluation to 
only include data points after stabilization has been achieved 
(Supplementary Fig. 2).

To overcome this problem of bias, we propose as an alternative 
drug effect metric the drug-induced proliferation (DIP) rate11,12, 
defined as the steady-state rate of proliferation of a cell population 
in the presence of a given concentration of drug. Using related 
approaches, we previously quantified clonal fitness12 and hetero-
geneous single-cell fates11 within cell populations responding to 
perturbations. Here, we show that DIP rate is an ideal metric of 
antiproliferative drug effect because it naturally avoids the bias 
afflicting traditional metrics, it is easily quantified as the slope of 
the line on a plot of the doubling of cell populations versus time 
(Supplementary Fig. 2), and it is interpretable biologically as the 
rate of regression or expansion of a cell population.

To theoretically illustrate the consequences of time-dependent  
bias in standard drug effect metrics, we constructed a simple 
mathematical model of cell proliferation that exhibits the salient 
features of cultured cell dynamics in response to drug (Online 
Methods, Supplementary Note, Supplementary Fig. 3, and 
Supplementary Table 2). The model assumes that cells experi-
ence two fates, division and death, and that the drug modulates 
the difference between the rates of these two processes, i.e., the 
net rate of proliferation. Drug action may occur immediately or 
gradually over time, depending on the chosen parameter values. 
In all cases, a stable DIP rate is eventually achieved and, when 
calculated over a range of drug concentrations, a sigmoidal 
dose–response relationship emerges (Supplementary Note and 
Supplementary Fig. 3).

We model three scenarios: treatment of a fast-proliferating cell line 
with a fast-acting drug (Fig. 1a), treatment of a slow-proliferating  
cell line with a fast-acting drug (Fig. 1b), and treatment of a 
fast-proliferating cell line with a delayed-action drug (Fig. 1c). 
In each case, we generate simulated growth curves in the pres-
ence of increasing drug concentrations (Fig. 1, columns 1 and 2) 
and from these produce static dose–response curves by taking 
cell counts at single time points between 12 h and 120 h (Fig. 1, 
column 3). As expected, in each scenario the shape of the dose–
response curve varies depending on the time of measurement. 
Consequently, parameter values (EC50 and AA) extracted from 
these curves also vary (Fig. 1, columns 4 and 5). Similar results 
are obtained for an alternative drug effect metric proposed by 
the U.S. National Cancer Institute’s Developmental Therapeutics 
Program13 (Supplementary Note and Supplementary Fig. 4). 
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In vitro cell proliferation assays are widely used in pharmacology, 
molecular biology, and drug discovery. Using theoretical 
modeling and experimentation, we show that current metrics of 
antiproliferative small molecule effect suffer from time-dependent  
bias, leading to inaccurate assessments of parameters such 
as drug potency and efficacy. We propose the drug-induced 
proliferation (DIP) rate, the slope of the line on a plot of  
cell population doublings versus time, as an alternative,  
time-independent metric.

Evaluating antiproliferative drug activity on cells in vitro is a  
widespread practice in basic biomedical research1–3 and drug 
discovery4–6. Typically, quantitative assessment relies on con-
structing dose–response curves7 (Supplementary Note and 
Supplementary Fig. 1). Briefly, a drug is added to a cell population 
over a range of concentrations, and the effect on the population is 
quantified with a metric of choice8. The de facto standard metric 
is the number of viable cells 72 h after drug addition4,6,8,9. Since 
this is a single-time-point measurement, we refer to it as a ‘static’ 
drug effect metric. The data is then fit to the Hill equation10, 
a four-parameter log-logistic function, to produce a sigmoidal 
dose–response curve that summarizes the relationship between 
drug effect and concentration. Parameters extracted from these 
curves include the maximum effect (Emax), half-maximal effec-
tive concentration (EC50), half-maximal inhibitory concentration 
(IC50), area under the curve (AUC), and activity area (AA)4,6,8,9 
(Supplementary Fig. 1 and Supplementary Table 1). These are 
useful for quantitatively comparing various aspects of drug activ-
ity across drugs and cell lines.

We contend that dose–response curves constructed using 
standard metrics of drug effect can result in erroneous and mis-
leading values of drug-activity parameters, skewing data interpre-
tation. This is because these metrics suffer from time-dependent  
bias: i.e., the metric value varies with the time point chosen for 
experimental measurement. We identify two specific sources of 
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In contrast, as DIP rate is the slope of a line, it is independent 
of measurement time. Using it as the drug effect metric gives  
a single dose–response curve (Fig. 1, columns 3 and 6) and  
single values of the extracted drug-activity parameters (Fig. 1, 
columns 4 and 5).

As a first confirmation of our theoretical findings, we subjected 
triple-negative breast cancer cells (MDA-MB-231) to the meta-
bolic inhibitors rotenone (Fig. 2a) and phenformin (Fig. 2b). 
Using fluorescence microscopy time-lapse imaging11,12,14 (Online 
Methods), we quantified changes in cell number over time for 
a range of drug concentrations. For both drugs, we observed  
a rapid stabilization of the drug effect (<24 h delay) and stable 
exponential proliferation thereafter, reminiscent of the growth 
dynamics of the theoretical cell lines treated with fast-acting drugs 
(Fig. 1a,b). We generated dose–response curves from these data 
using the standard static effect metric and DIP rate for various 
drug exposure times. Consistent with our theoretical results, the 
shape of the static-based dose–response curve strongly depended 
on the time point at which cell counts were taken, an illustration 
of time-dependent bias. The DIP rate, on the other hand, was 
free of time-dependent bias and produced a single dose–response 
curve in both cases.

These DIP-rate-based dose–response curves produce interest-
ing insights (Fig. 2a,b). For example, they indicate that while 
rotenone is much more potent than phenformin (EC50  8.5 nM 
versus 25 M), phenformin is more effective (Emax/E0  −0.1  
versus 0.1). The static dose–response curves can discriminate 
the ordering of potencies (rotenone >> phenformin) but not the 
ordering of efficacies: i.e., the static drug effect metric obscures 
the crucial fact that at saturating concentrations phenformin is 
cytotoxic (cell populations regress) while rotenone is partially 

cytostatic (cell populations continue to expand slowly). This infor-
mation is critical to studies assessing drug mechanism of action. 
This example illustrates the perils of biased drug effect metrics 
and the ability of DIP rate to produce reliable dose–response 
curves from which accurate quantitative and qualitative assess-
ments of antiproliferative drug activity can be made.

To illustrate the confounding effects that a delay in the  
stabilization of the drug effect can have, we examined single- 
cell-derived clones of the lung cancer cell line PC9, which is known 
to be hypersensitive to erlotinib15, an epidermal growth factor 
receptor (EGFR) kinase inhibitor. Consistent with our previous 
report11, three drug-sensitive PC9-derived clones (DS3, DS4, and 
DS5) each responded to 3 M erlotinib with nonlinear growth 
dynamics over the first 48–72 h, followed by stable exponential 
proliferation thereafter (Fig. 2c). These dynamics are reminis-
cent of those for the theoretical fast-proliferating cell line with a 
delayed-action drug (Fig. 1c). Because of the delay in drug action, 
all three clones had nearly identical population sizes 72 h after 
drug addition for all concentrations considered. The static 72-h 
metric thus produces essentially identical dose–response curves 
for all clones (Supplementary Fig. 5). In contrast, dose–response 
curves based on DIP rate make a clear distinction between the 
clones in terms of their long-term response to drug: i.e., erlotinib 
is cytotoxic (negative DIP rate) for two of the clones but partially 
cytostatic (positive DIP rate) for the other (Fig. 2c).

We then investigated the effects of erlotinib and lapatinib  
(a dual EGFR/human EGFR 2 (HER2) kinase inhibitor) on HER2-
positive breast cancer cells (HCC1954; delay ~48 h; Fig. 2d). In 
each case, DIP-rate-based dose–response curves produced EC50 
values more than five-fold larger than their static counterparts; i.e., 
by the static drug effect metric the drugs appeared significantly  
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Figure 1 | Theoretical illustration of bias in dose–response curves based on static metrics of drug effect. Shown are computational simulations  
of the effects of drugs on (a) a fast-growing cell line treated with a fast-acting drug, (b) a slow-growing cell line treated with a fast-acting drug,  
and (c) a fast-growing cell line treated with a slow-acting drug. In all cases, in silico growth curves, plotted in linear (column 1) and log2 (column 2) 
scale, are used to generate static- (column 3) and DIP-rate-based (columns 3 and 6) dose–response curves, from which EC50 (column 4) and  
AA (column 5) values are extracted. For DIP-rate-based values of EC50 and AA, the black triangle denotes the first time point used to calculate  
the DIP rate (i.e., after the drug effect has stabilized; Online Methods) and the trailing black line signifies that the value remains constant for  
all subsequent time points (see Supplementary Note for further discussion). a.u., arbitrary units.
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more potent than they actually were. Taken 
together with the PC9 results (Fig. 2c),  
these data illustrate the importance of 
accounting for delays in drug action when 
assessing antiproliferative drug activity, and 
they further emphasize the ability of the 
DIP rate metric to produce accurate drug-
activity parameters and qualitative conclu-
sions about drug-response dynamics.

Within the last several years, a number 
of studies have been published reporting 
drug responses for hundreds of cell lines 
derived from various cancer types4,6,9,16,17 
and organ sites8,18,19. Raw data are avail-
able for the responses of over 1,000 can-
cer cell lines to a panel of 24 drugs in the 
Cancer Cell Line Encyclopedia (CCLE)6 
and for the responses of over 1,200 cell lines to 140 drugs in the 
Genomics of Drug Sensitivity in Cancer (GDSC) project9. These 
data are largely based on 72-h cell counts, a metric that we have 
shown contains time-dependent bias.

To investigate bias in these data sets, we treated four BRAFV600E- 
or BRAFV600D-expressing melanoma cell lines with various con-
centrations of the BRAF-targeted agent PLX4720, an analog of 
vemurafenib. We produced experimental growth curves (Fig. 3a) 
and static- and DIP-rate-based dose–response curves (Fig. 3b), and 
we extracted IC50 values for each cell line and compared these to 
IC50 values obtained from the CCLE and GDSC data sets (Fig. 3c).  
In all cases, our IC50 values corresponded closely to the value 
from at least one of the public data sets. While in three cases the 
static- and DIP-rate-based IC50 values corresponded within an 
order of magnitude, in one case (A375), they differed by nearly 
two orders of magnitude. This discrepancy can be traced to a 
period of complex, nonlinear dynamics (brief regression followed 
by rebound) observed for this cell line between 24 h and 72 h 

post drug addition (Fig. 3a). This result is particularly intriguing 
because it shows that, based on DIP rate, this cell line is not much 
different than the other three cell lines in terms of drug sensitivity. 
Using the biased static drug effect metric, however, one would be 
led to the incorrect conclusion that it is significantly more sensi-
tive. It is likely that cases like this abound within these and other 
similar data sets16,17, and this likelihood illustrates the critical 
need for new antiproliferative drug effect metrics.

Current protocols for cell proliferation assays are based on 
informal ‘rules of thumb’, for example, counting cells after 72 h  
of treatment to ameliorate the impact of complex dynamics and 
delays in drug response. However, these de facto standards have 
no theoretical basis and, as demonstrated here, they suffer from 
time-dependent bias that leads to erroneous conclusions. In light 
of the widespread applications of cell proliferation assays in oncol-
ogy, pharmacology, and basic biomedical science20 (for example, 
to assess activity of cytokines, cell surface receptors, altered signal-
ing pathways, gene overexpression and silencing, or cell metabolic 
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Figure 2 | Experimental illustration of time-
dependent bias in dose–response curves for 
drug-treated cancer cells. Shown are population 
growth curves (log2 scaled) and derived (static- 
and/or DIP-rate-based) dose–response curves  
for (a) MDA-MB-231 triple-negative breast 
cancer cells treated with rotenone; (b) MDA- 
MB-231 cells treated with phenformin;  
(c) three single-cell-derived drug-sensitive 
(DS) clones of the EGFR-mutant-expressing 
lung cancer cell line PC9 treated with erlotinib; 
and (d) HCC1954 HER2-positive breast cancer 
cells treated with erlotinib and lapatinib. 
Data for a and b are from single experiments 
with technical duplicates; data in c are from 
individual wells for two experiments containing 
technical duplicates (growth curves) and from 
a single experiment with technical duplicates 
(dose–response curves); data in d are sums of 
technical duplicates from a single experiment 
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adaptation to varied microenvironmental 
conditions), it is imperative that the quality 
of the metric for antiproliferative assays be 
improved. Toward this end, we have pro-
posed DIP rate as a viable, unbiased alter-
native antiproliferative drug effect metric. 
DIP rate overcomes time-dependent bias 
by log-scaling cell count measurements to account for exponen-
tial proliferation and by shifting the time window of evaluation 
to accommodate lag in the action of a drug, changes that do not 
substantially alter experimental design (Supplementary Note and 
Supplementary Figs. 6–9). Moreover, DIP rate is an intuitive, 
biologically interpretable metric with a sound basis in theoretical 
population dynamics, and it faithfully captures, within a single 
value, the long-term effect of a drug on a cell population.

METHODS
Methods and any associated references are available in the online 
version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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(b) Dose–response curves based on the static 
effect metric (colored lines) and DIP rate (black 
line). (c) Static- (circles) and DIP-rate-based 
(triangle + line) estimates of IC50 for each 
measurement time point. IC50 values obtained 
from public data sets (CCLE and GDSC), based on 
the static 72-h drug effect metric, are included 
for comparison. The triangle denotes the first 
time point used in calculating the DIP rate, 
and the trailing black line signifies that the 
value remains constant for all subsequent time 
points. Data shown are from a single experiment 
with technical duplicates. Experiment has been 
repeated at least twice with similar results. 
Dashed gray lines indicate y-axis values of 0.
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ONLINE METHODS
Dose–response curve fitting. All drug-response data (theoreti-
cal and experimental) were fit with a four-parameter log-logistic 
function (Supplementary Note) using nonlinear least-squares 
regression21 within the R statistical programming environment 
(http://R-project.org). Fitting was performed using the “drm” 
function of the “drc” R package22. 95% confidence intervals for 
each parameter were obtained using the delta method assuming 
asymptotic variance21 as implemented within the “confint” func-
tion of the “stats” R package. EC50 is a fit parameter of the model. 
IC50 is the concentration at which Edrug = E0/2 (Supplementary 
Fig. 1 and Supplementary Table 1), independent of the value  
of Emax, and is obtained using the “ED” function of the “drc”  
R package. AA (Supplementary Fig. 1) is calculated as 

AA drug,( / )/E E Ni
i

N
0

1
1

where Edrug,i is the value of the effect metric at the ith drug concen-
tration and N is the total number of concentrations considered.

A simple two-state model of drug action on an exponentially 
proliferating cell population. We assume that cells can exist 
in two states, a ‘no-drug’ and a ‘drug-saturated’ state, and that 
cells in each state can experience two fates, division and death, 
with kinetic rate constants that are characteristic of the state, 
i.e., reflecting the effect of the drug (visual representation of the 
model is provided in Supplementary Fig. 3a). In the presence  
of drug, cells can transition from the no-drug to the drug- 
saturated state at a rate proportional to the concentration of drug. 
Reverse transitions occur at a rate independent of drug. If Cell is 
the number of cells in the no-drug state and Cell* is the number 
of cells in the drug-saturated state, then the temporal dynamics 
of the drug-treated cell population are described by the following 
pair of coupled ordinary differential equations, 

dCell
dt

k k k Drug Cell k Cell( )div death on off

dCell
dt

k k k Cell k Drug Cell( )div death off on

where kdiv (kdiv*) and kdeath (kdeath*) are the rate constants for 
cellular division and death, respectively, in the no-drug (drug-
saturated) state; Drug is the drug concentration; kon is the rate 
constant for the transition from the no-drug to the drug-saturated 
state; and koff is the rate constant for the reverse transition.

At a given drug concentration (assumed to be constant; i.e., 
drug is not consumed, removed, or degraded), a population of 
cells will eventually reach a dynamic equilibrium in terms of 
the number of cells in each state. The effective DIP rate of a cell 
population is then the weighted average of the net proliferation 
rates (i.e., the difference between the division- and death-rate  
constants) of the two individual states (Supplementary Fig. 3b).  
With increasing drug concentration, the equilibrium shifts 
increasingly toward the drug-saturated state, asymptotically 
approaching 100% occupancy. The result is a sigmoidal dose–
response relationship between DIP rate and drug concentration 
(Supplementary Fig. 3c,d). If the values of the rate constants 

(1)(1)

(2)(2)

(3)(3)

governing the interconversion between the no-drug and drug-
saturated state (kon and koff) are ‘large’ (effectively infinite), then 
the dynamic equilibrium between states is achieved immediately 
upon drug addition. This is known as the partial equilibrium 
assumption (PEA)23,24. Mathematically, the PEA asserts that 

k Drug Cell k Cellon off

Under this assumption, an analytical solution for the total number 
of cells, CellT = Cell + Cell*, can be obtained as a function of time, 

ln ( )
( )

( ) (
Cell t
Cell

k
k

k k Drug k k
T
T 0

off
on

div death div death ))

k
k

Drug
t

off
on

where CellT(0) is the initial number of cells. All theoretical results 
shown in Figure 1a,b were obtained using equation 5. For the results 
in Figure 1c and Supplementary Figure 4, numerical integration 
of equations 2 and 3 was necessary since the values of kon and koff 
were set such that the PEA does not hold (Supplementary Table 2);  
i.e., there is a delay in the stabilization of the drug effect. Numerical 
integration was performed in R using the deSolve package25. For 
further details of the model, see Supplementary Note; for all 
parameter values used in this work, see Supplementary Table 2.

Cell lines. The PC9 cell line was originally obtained from W. Pao 
(Vanderbilt University). WM115 cells were from M. Herlyn (Wistar 
Institute). All other cell lines were obtained from the American Type 
Culture Collection (http://www.atcc.org). All cell lines are regularly 
tested for mycoplasma using a PCR-based method (MycoAlert, 
Lonza, Allendale, NJ) and any positive cultures are immediately dis-
carded. Cell line authentication is provided by ATCC. Authenticity 
of PC9 and WM115 have not been verified.

Time-lapse fluorescence microscopic imaging. Time-lapse fluo-
rescence microscopy of cells expressing histone H2B conjugated to 
monomeric red fluorescent protein (H2BmRFP) to facilitate auto-
mated image analysis for identifying and quantifying individual 
nuclei was performed as previously described11,12,14. Briefly, cells 
are engineered to express H2BmRFP using recombinant, rep-
lication-incompetent lentiviral particles and flow sorted for the 
highest 20% intensity. Cells are seeded at ~2,500 cells per well in 
96-well imaging microtiter plates (BD Biosciences) and fluorescent 
nuclei are imaged using a BD Pathway 855 with a 20× objective 
in 3 × 3 montaged images per well at ~15 min intervals for 5 d. 
Alternatively, fluorescent cell nuclei are imaged twice daily using 
a Synentec Cellavista High End with a 20× objective and tiling 
of nine images. DIP-rate-based dose–response curves shown in 
Figure 2c were generated from a single experiment performed at 
the Vanderbilt High-Throughput Screening Core on a Molecular 
Devices ImageXpress using similar imaging parameters. The exper-
iment had two technical replicates per condition and images were 
obtained at 0, 24, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 
100, 104, 108, and 112 h after addition of erlotinib at each of eight 
different concentrations or dimethyl sulfoxide (DMSO) control.

Other statistical considerations and code availability. Estimates 
of DIP rate are determined within an experiment using the sum of 

(4)(4)

(5)(5)
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cells across all technical replicates at a given time point and obtain-
ing the slope of a linear model of log2(cell number) ~time for time 
points greater than the observed delay. Minimum delay time is 
estimated by visual inspection of log-growth curves for the time at 
which they become approximately linear (for an automated method 
of estimating the stabilization time point, see Supplementary 
Note and Supplementary Figs. 6 and 7). All data analysis was 
performed in R (version 3.2.1, Supplementary Software) and 
all raw data and updated R analysis code is freely available at  
http://www.github.com/QuLab-VU/DIP_rate_NatMeth2016.

Publicly available data sets. Drug-response data were  
obtained from the Genomics of Drug Sensitivity in Cancer 

(GDSC) project4,9 website at ftp://ftp.sanger.ac.uk/pub/project/
cancerrxgene/releases/release-5.0/gdsc_drug_sensitivity_
raw_data_w5.zip and from the Cancer Cell Line Encyclopedia 
(CCLE)6 website at http://www.broadinstitute.org/ccle/ in the 
data file CCLE_NP24.2009_Drug_data_2015.02.24.csv (user 
login required).

21. Seber, G.A.F. & Wild, C.J. Nonlinear Regression (Wiley, 2003).
22. Ritz, C. & Streibig, J.C. J. Stat. Softw. 12, 1–22 (2005).
23. Cornish-Bowden, A. Fundamentals of Enzyme Kinetics 4th edn.  

(Wiley-Blackwell, 2012).
24. Rein, M. Phys. Fluids A Fluid Dyn. 4, 873–886 (1992).
25. Soetaert, K., Petzoldt, T. & Setzer, R.W. J. Stat. Softw. 33, 1–25 (2010).
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Supplementary Figure 1 

Different formulations of the dose–response curve 

Potency parameters EC50 and IC50 are shown, as are area under the curve (AUC) and activity area (AA; the inverse of AUC), 
parameters that attempt to capture both potency and efficacy in a single quantity. (a) The “scaled” form given in equation (S2); (b) The 
“direct effect” form obtained by rearranging equation (S2) to solve for Edrug; (c) The “response ratio” form obtained by dividing the direct-
effect form by E0. Note that we consider here a case where Emax < 0, which is possible when using a dynamic drug effect metric such as 
DIP rate. This results in IC50 < EC50 (see equation S5). In cases like this, the IC50 is sometimes referred to as the GI50 (half-maximal 
growth inhibitory concentration; see Supplementary Table 1). 
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Supplementary Figure 2 

Fast-acting drugs, slow-acting drugs, and DIP rate 

Hypothetical growth curves (in log scale) for a cell line untreated and treated with two different drugs: a fast-acting drug where the full 
effect is achieved immediately, and a slow-acting drug that causes a temporal delay in the stabilization of the drug effect. Also shown is 
drug-induced proliferation (DIP) rate, defined as the slope of the line after the drug effect has stabilized (in this case, immediately for the 
fast-acting drug and ≥48h for the slow-acting drug). Note that the DIP rate is shown as equivalent for both the fast- and slow-acting 
drugs for illustration purposes only. 
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Supplementary Figure 3 

Two-state model of fractional proliferation predicts a sigmoidal relationship between proliferation rate and drug concentration. 

(a) The model assumes two states, a drug-naïve state and a drugged state, each with its own characteristic rate of proliferation (DIP0 
and DIPmax, respectively), which is the difference between the rates of cell division and death. The rate of transition from the drug-naïve 
state to the drugged state depends on the concentration of drug, while the reverse transition does not. Hence, as the concentration of 
drug increases, the dynamic equilibrium between states shifts increasingly in favor of the drugged state. (b) Since the action of an 
antiproliferative drug is to reduce, and perhaps reverse, the rate of proliferation of a cell population, we assume that the proliferation 
rate of the drug-naïve state is positive and greater than that of the drugged state (which may be positive or negative). In Figure 1 of the 
main text, we assume that in each case the drug is cytotoxic at saturating drug concentrations (i.e., causes regression of the cell 
population). Hence, the DIP rate of the drugged state (DIPmax) is assumed to be negative. (c) An example dose–response curve 
predicted by the two-state model under the partial equilibrium assumption (PEA). The curve was generated from equation (S27) with 
EC50 = 1e–8 M, DIP0 = 0.06*ln(2) h-1, and DIPmax = –0.03*ln(2) h-1. (d) An example dose–response curve predicted by the two-state 
model in conditions where the PEA does not hold. The curve was generated by numerical integration of equations (S12) and (S13) with 
kon = 1e5 M-1 h-1, koff = 1e–3 h-1, kdiv– kdeath = 0.06*ln(2) h-1, and kdiv* – kdeath* = –0.03*ln(2) h-1. Note that these are consistent with the 
values used in part (c); see equations (S22), (S23), and (S26). Arrows highlight largest differences between calculated values (circles) 
and the Hill equation fit (black line). 
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Supplementary Figure 4 

Theoretical illustration of bias in dose–response curves based on the NCI DTP dynamic drug effect metric 

(a) Growth curves in the absence and presence of 630 nM drug for the theoretical fast-growing cell line with delayed drug effect (Fig. 1c 
in the main text). Dash-dotted lines are a visual illustration of the NCI DTP dynamic metric and the time-dependent bias that it harbors. 
Depending on when cell count measurements are taken, the NCI DTP metric can indicate that the drug is partially cytostatic (<96h), 
fully cytostatic (96h), or cytotoxic (>96h) at this concentration. (b) Comparison of dose–response curves for this cell line and drug type 
based on the NCI DTP dynamic effect metric and DIP rate. The vertical orange line corresponds to 630 nM drug concentration; circles 
correspond to those in part (a). 
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Supplementary Figure 5 

Static-based dose–response curves for PC9 parental cells and subclones treated with erlotinib 

Dose–response curves for three PC9-derived drug-sensitive (DS) clonal sublines (DS3, DS4, DS5) and parental PC9 cells treated with 
erlotinib using cell counts after 72h drug exposure as the drug effect metric. Filled circles are mean values (n ≥ 6), lines are optimal fits 
to a four-parameter log-logistic model (equation S2), and grey shading indicates 95% confidence intervals on the fitting function. None 
of the dose–response curves for the clonal sublines is statistically different from the parental curve based on t-statistics and the null 
hypothesis that the ratio of clonal to parental values is 1 (p>0.05 for each of the four fitting parameters). 
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Supplementary Figure 6 

Automated estimation of DIP rate from cell count data 

Cell count data for three PC9 sublines treated with 3 M erlotinib (Fig. 2c of the main text) is used to evaluate the ability to automatically 
estimate drug effect stabilization times and DIP rates using adjusted R2 and root-mean-squared error (RMSE) as measures of linearity. 
Best linear model fits to the population growth curves (solid red lines) are based on the RMSE-estimated stabilization times. A fifth-
order polynomial (solid blue line) was fit to the RMSE curve and used to estimate the point at which exclusion of additional data points 
does not substantially improve the linear model fit. Source code implementing this approach (dipDRC.r) is freely available at 
github.com/QuLab-VU/DIP_rate_NatMeth2016. See Supplementary Note for more details. 
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Supplementary Figure 7 

Effects of sampling frequency on automated DIP rate estimation 

Cell count data for one PC9 subline (DS3) treated with 3 M erlotinib (Fig. 2c of the main text and Supplementary Fig. 6) is used to 
evaluate the robustness of the automated DIP rate estimation method to changes in sampling frequency. The full data set (top row) was 
successively subsampled a total of four times. Best linear model fits (solid red lines) are based on the adjusted R2-estimated 
stabilization times. DIP rates for data sets with ≥15 data points varied by less than 1%; DIP rate from the smallest data set (n=8) was 
within 15% of that for the full data set. Gray shading indicates 95% confidence interval on the DIP rate. See Supplementary Note for 
more details. 
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Supplementary Figure 8 

Theoretical effects of variations around a mean cell seeding density on the static effect metric and response ratio 

The two-state model of fractional proliferation (Supplementary Note and Supplementary Fig. 3) with the “fast proliferating / fast acting” 
parameter set (Supplementary Table 2) is seeded with initial cell counts drawn from a normal distribution with mean 1 and standard 
deviation 0.1 and simulated under untreated and drug-treated conditions. (a) 100 simulated time courses each of untreated and drug-
treated cell populations. (b) Boxplots of static response ratios at 72h for variations in seeding density alone and variations in seeding 
density and measurement time (72  5h). Based on 108 samples. Red line is the median; black dot is the mean; boxes extend from the 
first to third quartile; whiskers extend 1.5 times the interquartile range; outliers are not shown. (c) For variations in the seeding density 
alone, histograms for the mean of 10 untreated final (72h) cell counts (n=104; left column), the drug-treated final cell count (n=104; 
middle column), and the static response ratio (n=108; right column). Sample means, standard deviations, and skews are shown in each 
case. Analytical distributions are shown in red (equations S30, S32, and S33). (d) Same as c (less the analytical distributions) but for 
variations in both seeding density and measurement time (72  5h). 
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Supplementary Figure 9 

Effects of variations in mean cell seeding density on DIP rate estimation 

Cell count data for BRAF-mutant (SKMEL5) melanoma cells treated with 8 M PLX4720 is used to evaluate the effects of mean 
seeding density on DIP rate estimates. Cell counts were obtained using fluorescence microscopy imaging (Online Methods). (a) 
Population growth curves (log2 scaled) for each seeding density considered (n=4; seeding density in cells/well is listed above each 
plot). Vertical dashed line corresponds to ~72h, the hand-chosen stabilization time; data to the right of this point were used to estimate 
DIP rate. (b) Population growth curves from part (a) normalized to the number of cells for each well at the first time point. Vertical 
dashed line corresponds to ~72h. (c) Boxplots of estimated DIP rates (n=4) at each seeding density. Mean values were statistically 
indistinguishable across all seeding densities (p=0.47); variances were not (Levene’s test, p=0.0082), as expected (see Supplementary 
Note). 
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SUPPLEMENTARY NOTE 
 

Dose–response curves and the Hill equation 
 
In its most general form, the Hill equation can be written as  

! = !!
!!!!! ,         (S1) 

where x is the independent variable, y is the dependent variable, C is a constant that when equal to x 
results in a value of y = 1/2, and h is the Hill coefficient (note that C and h can both be positively or 
negatively valued). For cell proliferation assays, where Edrug is the effect induced by drug at 
concentration drug, Emax is the maximum achievable drug effect, and E0 is the effect in the absence of 
drug, dose-response curves can be constructed using equation (S1) with x as the drug concentration, y 
as the ratio (Edrug – Emax) / (E0 – Emax), the constant C > 0 as the “half-maximal effective concentration,” 
denoted as EC50, and h > 0 (assuming drug inhibits cell population growth), i.e., 

!!"#$!!!"#
!!!!!"#

=  !"!"!
!"!"!!!"#$!

.       (S2) 

Equation (S2) is known as a four-parameter log-logistic function, the four parameters being Emax, E0, 
EC50, and h. Besides these four, additional drug-activity parameters that can be extracted from these 
curves include IC50 (the half-maximal inhibitory concentration), area under the curve (AUC), and activity 
area (AA; the inverse of AUC)1-6 (see Supplementary Table 1 for definitions of these and other relevant 
terms). These parameters can be used to compare various aspects of drug activity quantitatively across 
drugs and cell lines. We refer to equation (S2) (reproduced in Supplementary Fig. 1a) as the “scaled” 
form of the dose-response curve because the y-axis values are scaled between 0 and 1. 

 
Dose–response curves are generally plotted with drug concentrations along the x-axis in log10 

scale in order to easily visualize a broad range of concentrations. In this view, we can show that the Hill 
coefficient h is inversely proportional to the slope of the curve at the EC50 by noting that log10(x) = ln(x) / 
ln(10) and calculating the derivative of equation (S1) with respect to log10(x), 

!"
!log!"!

= !"
!" ∙

!"
!log!"!

 = ! !" !" !!!!!
!!!!! ! .

       (S3) 

Evaluating this at x = C gives 

!"
!log!"!

 
!!!

= ! !" !"
! ℎ.        (S4) 

Hence, the larger the value of h the steeper the dose–response curve at the EC50, and vice versa1.  
 

Furthermore, we define the IC50 (half-maximal inhibitory concentration) as the concentration of 
drug at which Edrug = E0 / 2 (Supplementary Table 1). Substituting this into equation (S2), setting drug = 
IC50, and rearranging gives 

!"!"! = !.!∙!!
!.!∙!!!!!"#

∙ !"!"! .       (S5) 

We see, therefore, that if Emax < 0 then IC50 < EC50 (Supplementary Fig. 1), and vice versa. Importantly, 
we also see that IC50 is not defined if Emax ≥ E0/2, which makes intuitive sense. Note that when cell 
number after a specified period of drug exposure is used as the drug effect metric (the standard “static” 
metric), Emax is always ≥ 0. However, for dynamic metrics such as DIP rate, Emax can be positive or 
negative. 
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In practice, E0 and Emax, along with EC50 and h, are treated as adjustable parameters that can be 
estimated based on a numerical fit to experimental drug-response data using nonlinear least-squares 
regression. To accomplish this, equation (S2) is rearranged to solve for Edrug, which we refer to as the 
“direct effect” form of the dose–response curve (Supplementary Fig. 1b). In the main text, we argue that 
a valuable characteristic of the DIP rate is that it is directly interpretable from a biological perspective. 
We support this claim by showing direct-effect DIP rate-based dose–response curves in column 6 of 
Figure 1. These can be used to directly infer the characteristics of the theoretical growth curves (e.g., 
proliferation rates in the absence of drug, DIP rates at saturating drug concentrations) shown in 
columns 1 and 2 of Figure 1. In general, we suggest that all DIP-rate based drug-response data be 
reported and stored (e.g., in public databases) in this form. 

 
In contrast to the DIP rate, static drug effect metrics (e.g., cell number 72h after drug exposure) 

do not have any biological meaning except with respect to a reference value, such as untreated control. 
As such, static dose–response curves are usually displayed in terms of the “response ratio” Edrug/E0. 
The equation for this form of the dose–response curve is obtained by simply dividing the direct-effect 
form by E0 (Supplementary Fig. 1c). In Figures 1–3 of the main text and Supplementary Figures 4 and 
5, we show numerous examples of dose–response curves plotted in terms of response ratios, both for 
traditional drug effect metrics and DIP rate. This allows us to directly compare traditional and DIP rate-
based dose–response curves on the same plot. Furthermore, in the case of DIP rate, direct-effect and 
response-ratio dose–response curves convey complementary, but distinct, information, which may be 
important for interpreting drug effects within different contexts. For example, in Figure 1, the fast- and 
slow-proliferating cell lines treated with fast-acting drugs exhibit identical response-ratio dose–response 
curves (by construction; see Supplementary Table 2). This indicates the same dose-dependent drug 
activity in these cell lines despite the substantially different basal rates of proliferation and rates of cell 
loss at high drug concentrations, evident in their direct-effect dose–response curves. When assessing 
drug activity across cell lines, in particular, both sets of information are important. We refrain, therefore, 
from advocating for one form of the dose–response curve over the other. Note, however, that response 
ratios are easily calculated from the information contained within direct-effect dose–response curves, 
which is why we advocate reporting and storing drug-response data in this form. 

 
Simple two-state model of drug concentration-dependent fractional proliferation 

 
Substantial evidence exists that anticancer drugs affect cultures of solid tumor-derived cancer 

cells by both inducing cell death and elongating cell cycle times7,8. We refer to the concept that the 
dynamics of drug-treated cell populations are a combined effect of multiple different cell fates (e.g., cell 
division, death, and survival) as “fractional proliferation” (see Supplementary Table 1). We previously 
described a Quiescence-Growth (QG) mathematical model that assumes that drugs can affect the rates 
of three different cell fates: division, death, and entry into quiescence8. We used the model to 
consolidate drug-induced single cell fate decisions with cell population dynamics for several cell lines 
treated with a variety of drugs8. However, the model does not describe the relationship between the 
rates of cell fates and the concentration of drug. We therefore modified the QG model, as described in 
detail below, to provide a mechanistic basis for the observed log-logistic relationship between drug 
concentration and steady-state rate of cell proliferation (i.e., DIP rate). 

  
As described in Online Methods, we assume that cells can exist in two states: a “no-drug” and a 

“drug-saturated” state. Cells within each state can divide and die at rates that are characteristic of the 
state. Furthermore, cells can transition between the two states, with the rate of transition from the no-
drug to the drug-saturated state being dependent upon drug concentration (Supplementary Fig. 3a). 
Since the effect of an anticancer drug is to reduce the net rate of proliferation of a cell population, we 
impose that the proliferation rate of the no-drug state be larger than that of the drug-saturated state 
(Supplementary Fig. 3b). Defining Cell and Cell* to be the populations of cells in the no-drug and drug-
saturated states, respectively, the model can be written in kinetic terms as 

!"## !!"# !"## + !"##        (S6) 

!"## !!"#$! ∅         (S7) 
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!"## + !"#$ !!" !"##∗ + !"#$       (S8) 

!"##∗
!!"" !"##         (S9) 

!"##∗ !!"#∗ !"##∗ + !"##∗        (S10) 

!"##∗ !!"#$!∗ ∅         (S11) 

where ∅ represents cell death (the null state) and all rate constants are as illustrated in Supplementary 
Figure 3a. 

 
Assuming continuous and deterministic dynamics, the time course of a drug-treated cell 

population is described by a coupled set of ordinary differential equations (ODEs), which can be 
derived directly from reaction set (S6)–(S11),  

!"#$$
!" = !!"# − !!"#$! − !!" !"#$ ∙ !"## + !!"" ∙ !"##∗,   (S12) 

!!"##∗
!" = !!"#∗ − !!"#$!∗ − !!"" ∙ !"##∗ + !!" ∙ !"#$ ∙ !"##.   (S13) 

Equations (S12) and (S13) are presented as equations (2) and (3) in the main text, respectively. In 
general, these equations must be solved numerically. However, if the rate constants kon and koff that 
govern the transitions between the no-drug and drug-saturated states are “large” (effectively infinite), 
then a solution can be obtained analytically under the partial equilibrium assumption9 (PEA). The PEA 
amounts to setting the rates of reactions (S8) and (S9) equal to each other, i.e., 

!!" ∙ !"#$ ∙ !"## = !!"" ∙ !"##∗.       (S14) 

Equation (S14) is presented as equation (4) in the main text. If we define the total cell population as 

!"##! ≡ !"## + !"##∗,        (S15) 

then we can obtain expressions for the no-drug and drug-saturated cell populations as a function of the 
total cell population by substituting equation (S15) into equation (S14) and rearranging, 

!"## =  
!!""
!!"

 
!!""
!!" !!"#$

∙ !"##!,       (S16) 

!!""∗ =  !"#$
!!""
!!" !!"#$

∙ !"##!.       (S17) 

Summing equations (S12) and (S13) gives a single ODE describing the temporal dynamics of the total 
cell population, 

!!"##!
!" = !"#$$

!" + !!"##∗
!" = !!"# − !!"#$! ∙ !"## +  !!"#∗ − !!"#$!∗ ∙ !"##∗. (S18) 

Substituting equations (S16) and (S17) into equation (S18) and rearranging gives 

!!"##!
!" =  

!!""
!!" !!"#!!!"#$! ! !"#$ !!"#∗!!!"#$!∗

 
!!""
!!" !!"#$

∙ !"##!,    (S19) 

which can be solved analytically by separation of variables, 

ln !"##!
!"##! ! =

!!""
!!" !!"#!!!"#$! ! !"#$ !!"#∗!!!"#$!∗

 
!!""
!!" !!"#$

∙ !.    (S20) 
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Equation (S20) is presented as equation (5) in the main text. 
 

The DIP rate is defined as the slope of the line on a semi-log2 plot of cell number vs. time. 
Therefore, under the PEA, the DIP rate for our model is 

!"# =  !
!" ! ∙

!!""
!!" !!"#!!!"#$! ! !"#$ !!"#∗!!!"#$!∗

 
!!""
!!" !!"#$

.     (S21) 

At zero drug concentration, equation (S21) reduces to 

!"#! = !
!" ! ∙ !!"# − !!"#$! .       (S22) 

At maximum (infinite) drug concentration, equation (S21) reduces to 

!"#!"# = !
!" ! ∙ !!"#∗ − !!"#$!∗ .      (S23) 

With DIP, DIP0, and DIPmax as Edrug, E0, and Emax, respectively, equation (S2) describing the dose-
response curve can be rewritten as  

!"#!!"#!"#
!"#!!!"#!"#

= !"!"!
!"!"! !!"#$!

.       (S24) 

Substituting equations (S21)–(S23) into equation (S24) and rearranging gives 

!!""
!!"

!!""
!!" !!"#$

  = !"!"!
!"!"! !!"#$!

.       (S25) 

Thus, we see that under the PEA our model predicts a sigmoidal DIP rate-based dose-response curve 
with  

!"!" =
!!""
!!"

         (S26) 

and h = 1 (Supplementary Fig. 3c). We can now obtain an expression for the DIP rate in terms of DIP0, 
DIPmax, and EC50 by substituting equations (S22), (S23), and (S26) into equation (S21) and rearranging, 

!"# = !
!" ! ∙

!"!"∙!"#!!!"#$∙!"#!"#
!"#$!!"!"

.      (S27) 

Even in cases where the PEA does not hold, our two-state model (S6)–(S11) predicts a 
sigmoidal relationship between DIP rate and drug concentration, although not exactly of the Hill form 
(Supplementary Fig. 3d). The curve must be obtained in this case through numerical integration of 
equations (S12) and (S13), as an analytical solution is not possible. 

 
Cell proliferation assay developed by the National Cancer Institute Developmental Therapeutics 
Program 

 
An alternative effect metric that is sometimes used in cellular proliferation assays is the 

difference between cell number after a specified period of drug exposure and cell number at the time of 
drug addition1,10-13. A protocol for generating dose–response curves based on this metric has been 
developed by the U.S. National Cancer Institute’s Developmental Therapeutics Program10,11 (NCI DTP).  
The NCI DTP has been performing in vitro analyses of therapeutic compounds on a panel of 60 cancer 
cell lines (the NCI60) for several decades10. This program has screened thousands of compounds for 
their anticancer properties, of which the U.S. Federal Drug Administration has licensed dozens as 
clinical anticancer agents. The approach for characterizing anticancer drug response uses an indirect 
assay of cell counts based on spectrophotometric absorbance readings (described in detail at 
https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm). If the mean absorbance of the 
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treated sample after a specified period of drug exposure, Ti, is greater than or equal to the mean 
absorbance on day zero, Tz, then the response ratio is calculated as (Ti – Tz) / (C – Tz), where C is the 
absorbance of the control-treated cells at the same time point as Ti. However, if Ti < Tz, then the 
response ratio is calculated as (Ti – Tz) / Tz. In the terminology used in this paper, Ti – Tz is the drug 
effect metric and it is “dynamic” because it is based on measurements at more than one time point 
(Supplementary Table 1). 

 
The NCI DTP promotes its ability to characterize compounds for their differential or selective 

patterns of drug sensitivity, generally assessed by metrics of potency, across the panel of cancer cell 
lines14. In early work describing the development of the screening assay methodology, it was noted that 
dose–response data was strongly time dependent, such that “the magnitude of measured drug 
sensitivity in a given cell line is primarily dependent upon culture [and drug exposure] duration.”14 
However, because the NCI DTP metric is based on raw cell counts (not log scaled) and does not 
account for delays in the action of the drug, it is subject to the same sources of time-dependent bias 
that afflict the standard static effect metric (Figs. 1-3 of the main text). To demonstrate this, in 
Supplementary Figure 4a we provide a visual illustration of the NCI DTP dynamic metric applied to the 
population growth curve at 630 nM drug concentration from Figure 1c of the main text. We see 
immediately from this plot the confounding effects that bias can have on this metric: depending on when 
the cell count measurement is taken, the drug could be interpreted as being partially cytostatic (<96h), 
fully cytostatic (96h), or cytotoxic (>96h). We further quantify the effects of bias in Supplementary 
Figure 4b, where we generate dose–response curves over a range of measurement time points. As 
with the static effect metric (Fig. 1 of the main text), the shape of the NCI DTP-based curve strongly 
depends on the chosen measurement time point. In light of this fact, we caution against using the NCI 
DTP approach to infer specific biological activities of drugs, contrary to recent reports in the 
literature1,12,15,16. 

 
Practical considerations for using the DIP rate metric in high-throughput screening assays 
 

The following issues, related to both experimental design and data analysis, should be 
considered when adopting DIP rate as a standard drug effect metric in high-throughput screening 
assays. 

 
Duration of the experiment 

The recommended total assay duration is seven days since, in most cases, we observe 
stabilization of the DIP rate within this time frame. With modern environmentally controlled 
microscopes, these assays are easily set up and automated with robotics. It is also possible to perform 
longer-term assays if desired, e.g., to confirm DIP rate stability over longer time scales. Care should be 
taken, however, that cell density does not exceed 70% well surface area, as this can impact population 
size-independent drug action. 

 
Drug additions and media changes  

The procedure in use in our laboratory involves seeding cells into multiwell plates, allowing them 
to adhere and/or acclimate for 16–24h, and then adding drug-containing fresh medium (defined as time 
zero). After 72h, medium is replaced with fresh drug-containing medium and the assay is continued for 
another 72h. 

 
Range of drug concentrations  

Published EC50 or IC50 values, if available, are a good starting point for estimating the range of 
concentrations to be used (despite the potential bias in their values, as illustrated in this paper). A wide 
range around that value (e.g., four-fold dilutions for a total of eight drug concentrations) should span the 
relevant range in many cases. It is also possible to use 10-fold dilutions to cover a broader range, e.g., 
if published EC50 or IC50 values are not available. To minimize off-target effects, we typically use 
concentrations below the maximum drug solubility in aqueous buffers. 
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Cell counting methodology 
A variety of cell counting methods can be employed. In our experience, direct cell counting from 

fluorescence microscopy images of cells with labeled nuclei is ideal. Individual nuclei are automatically 
counted by automated image segmentation from digital time series images stored by a computerized 
microscope. Other means of labeling cells, or even unlabeled cells, can be used, although this may 
place more demands on automated cell counting. Indirect cell counting via fluorescence intensity 
measurements, such as CellTiterGlo, is also possible by implementing a scheme of replicate plates 
treated in parallel and harvested at different time points. 

 
Frequency of sampling 

In part, the frequency of cell counting is dictated by throughput (i.e., large numbers of plates may 
require accommodation of longer times between samples). To test the robustness of our automated 
DIP rate estimation algorithm (see below) to variations in sampling frequency, we calculated 
stabilization times and DIP rates from the complete DS3 data set (n=113) and from successively 
subsampled versions of the data set (n=57, 29, 15 and 8; Supplementary Fig. 7). The stabilization 
times obtained from all of these data sets fell within a 10h window (68–77h). DIP rates for all data sets 
with ≥15 data points varied by less than 1%; the DIP rate value from the smallest data set (n=8) was 
still within 15% of the value obtained from the complete data set. These results indicate that obtaining 
2–3 images per day (8–12h intervals) is likely sufficient in many cases to obtain reasonable estimates 
of drug effect stabilization times and DIP rates. 

 
Aggregation of data from technical and biological replicates  

Technical replicates (multiple wells in a plate) are unnecessary if sufficient numbers of cells can 
be quantified. However, if technical replicates are generated, the cell counts at each time point should 
be summed rather than averaged to reduce bias introduced by replicates with fewer cells. For biological 
replicates (separate repeat experiments), we calculate the mean DIP rate over all replicates. 
 
Collected data structure 

Cell count data is structured as a seven-column matrix, where the columns are:  (1) time of 
measurement, (2) cell count, (3) cell line ID, (4) drug name, (5) drug concentration, (6) well number, 
and (7) date. This structured data can be sent directly to the automatic DIP rate estimation algorithm 
(next subsection) to generate DIP rate-based dose–response curves. 

 
Automated estimation and statistical confidence of DIP rate  

As discussed in the main text, DIP rate is defined as the rate of growth of a cell population at 
steady state, i.e., after the effect of a drug (or any perturbagen) has stabilized. On a plot of cell 
population doublings vs. time, a stabilized drug effect corresponds to a sustained linearity of the growth 
curve. In high-throughput screening assays, computational algorithms that can detect drug effect 
stabilization and calculate DIP rates automatically from cell count data are necessary. To identify the 
optimal range of data over which to calculate DIP rate, we present here an algorithm using two 
commonly applied metrics of linear model fitting: adjusted R2 and root-mean-squared error (RMSE). 
Adjusted R2 quantifies how much the change in cell number can be explained by changes in time, 
whereas RMSE is a metric of how close the measured cell numbers are to values predicted by the 
linear model fit17. Our approach is to first fit a linear model to all data points from a time course and 
calculate adjusted R2 and RMSE values. We then progressively remove data points from the beginning 
of the time course, obtaining new model fits and recalculating the adjusted R2 and RMSE values until 
five data points remain (for a five-day experiment where cell counts are acquired every 12h, this 
amounts to about half the data points). DIP rate stabilization can then be defined either as (1) the time 
point at which the adjusted R2 value is at its maximum, i.e., when time and change in log2 cell number 
are most highly correlated, or (2) the time point at which the derivative of the RMSE curve (fit with a 
polynomial) first reaches zero (within a defined tolerance), i.e., the earliest time point for which RMSE is 
not significantly improved by exclusion of this point. To demonstrate the effectiveness of this approach, 
in Supplementary Figure 6 we apply it to the PC9 subline data shown in Figure 2c of the main text. Both 
the adjusted R2 and RMSE metrics produce similar values of stabilization times and DIP rates for each 
subline (DS3, DS4, DS5). Stabilization times are within a 10h window for DS5 and a 5h window for DS3 
and DS4; DIP rates are within 0.001 doublings h-1 for all sublines. Importantly, all PC9 sublines 
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(including others not shown) demonstrate a stabilized DIP rate by 72h, justifying our use of this time 
point in the analyses presented in the main text. Source code implementing this approach (dipDRC.r) 
is freely available at github.com/QuLab-VU/DIP_rate_NatMeth2016.    

 
Variations around a mean cell seeding density and measurement time 

Variations in the number of cells seeded per well are inevitable in high-throughput assays, even 
when using automated high-precision robotic platforms18. Because cell populations grow exponentially, 
the effects of these variations amplify over time and can significantly affect the calculated values of 
drug effect metrics and extracted drug-response parameters, such as potency and efficacy. Variability 
in the time point at which cell count measurements are acquired can have a similar effect. The 
consequences of these sources of variability can be quantified by considering the basic exponential 
growth formula, 

 
!(!) = !!!!",         (S28) 
 

where X(t) is the cell count at time t, X0 is the initial cell count, and k is the exponential growth rate, 
which is proportional to the DIP rate d=k/ln(2) (i.e., DIP rate is defined on a log2 basis and has units of 
[doublings/time]). From equation (S28), we see immediately that k, and hence d, is completely 
independent of the initial cell count and the measurement time point. DIP rate is thus unaffected by any 
variations in these quantities, assuming that intrinsic stochastic effects are minimal (see below). This 
quality of DIP rate makes it particularly well suited as a standard drug effect metric.  

 
The same cannot be said for X(t), which we refer to in the main text as the traditional static drug 

effect metric. If we assume that the initial cell count, X0, is distributed according to a normal (Gaussian) 
distribution with mean µ and variance σ2, denoted as 
 

!! ~ N (!,!!),          (S29) 
 
and we assume that the sampling time t is a constant !, then the final cell count (equation S28) is also 
normally distributed, 
 

! !  ~ N (!!!!, !!!!!!).        (S30) 
 
We see, therefore, that in the absence of variations in the measurement time, variability in the seeding 
density broadens the distribution of final cell counts by a constant factor that increases exponentially 
with the intrinsic growth rate of the cell population and with the measurement time point. In practice, 
X(t) is almost always considered in terms of a ratio with respect to untreated control, a quantity that we 
refer to as the “response ratio.” The control value is often taken as the mean cell count at time t from N 
(typically <10) control experiments, i.e., 

 
!! ! = !! !!

!!! !,        (S31) 
 

where the subscript c denotes “control.” Assuming that the mean and variance in the seeding density in 
the control experiments is equivalent to that in drug, we can use equations (S30) and (S31), with 
! ! = !! !  and k=kc, to derive the distribution 
 

!! !  ~ N (!!!!!, !!!!!!!/!).       (S32) 
 
The response ratio is thus distributed according to the ratio of the two normal distributions in equations 
(S30) and (S32), which we write as  
 

! !
!! !

 ~  N (!!!!,!!!!!!)
N (!!!!!,!!!!!!!/!).        (S33) 

 
An analytical expression for the distribution of the ratio of two normal random variables has been 
presented by Hinkley19.  
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In the case of variability in the measurement time, if we assume that t is normally distributed, 
 
!~ N (!! ,!!!),          (S34) 
 

then the exponential term in equation (S28) is no longer a constant, but is distributed according to a 
log-normal distribution, 
 

!!"~ lnN (!!! , !!!!!).         (S35) 
 

From equation (S28), the final cell count X(t) is therefore distributed according to the product of a 
normally distributed random variable (equation S29) and a log-normally distributed random variable 
(equation S35). This is known as a normal-log-normal (NLN) mixture distribution20. Since an analytical 
expression does not exist for the NLN distribution, we employ numerical simulation to obtain estimates 
for the distributions of X(t), <Xc(t)>, and the response ratio. 

 
In Supplementary Figure 8, we show results of our theoretical analysis of the effects of variability 

in seeding density and measurement time on the traditional static drug effect metric. We use the same 
two-state model as in the main text (described above) with the “fast proliferating / fast acting” parameter 
set (Supplementary Table 2). All simulations were performed deterministically using a standard ODE 
integrator211. In Supplementary Figure 8a, we show 100 simulated time courses each for untreated and 
drug-treated (3 nM) cell populations. Because the simulations are deterministic (no intrinsic noise 
effects), we normalize the initial cell counts to the mean, i.e., we sample from the distribution 

 
!! !~ N (1,!! !!),         (S36) 
 

with standard deviation σ/µ=0.1 (this quantity is also known as the coefficient of variation). To model 
variations in the measurement time, we sample simulation run times from a normal distribution 
(equation S34) with mean 72h and standard deviation 5h. We consider two cases: variations in cell 
seeding density alone and variations in both seeding density and measurement time. In both cases, we 
perform 105 control simulations (drug=0), partition the final cell counts into 104 groups of 10, and 
calculate mean values for each group. We then perform 104 drug-treated simulations and take the ratio 
of all pairs of drug-treated and control values to give us 108 samples of the static response ratio. 
Boxplots of these ratios are shown in Supplementary Figure 8b. Full distributions of <Xc(t)>, X(t), and 
the response ratio for variations in cell seeding density alone are shown in Supplementary Figure 8c, 
where analytical distributions (equations S30, S32, S33) are overlaid with simulation-based 
distributions. Simulation-based distributions in the case of variations in both cell seeding density and 
measurement time are shown in Supplementary Figure 8d.  

 
Overall, we see that normally distributed variations in cell seeding density result in a significant 

distribution of response ratios and that variations in the measurement time act to skew this distribution 
towards larger values. As such, identical experimental setups can result in a wide range of response 
ratios, which are used to generate dose–response curves from which drug-response parameters are 
extracted. This variability may therefore explain, in part, reported discrepancies among drug-response 
parameters in different publicly-available datasets3,4. As emphasized above and in the main text, DIP 
rate does not suffer from such variability and, hence, its adoption as a standard drug effect metric may 
improve congruence among such datasets in the future. 

 
Variations in mean cell seeding density  

In addition to random variations in cell number around a mean seeding density (previous 
subsection), the absolute number of seeded cells can also impact the dynamics of cellular proliferation 
and, hence, the precision and accuracy of measured values of drug effect metrics. The origin of this 
effect is the stochastic nature of cell fate decisions22,23, e.g., randomness in times to division and death. 
Such “intrinsic” stochastic effects are particularly prevalent at low cell numbers and, as a rule of thumb, 
scale as 1/√N, where N is the number of cells24. While a full theoretical treatment of the role of intrinsic 
stochasticity in cellular proliferation and its effect on drug effect metrics is outside the scope of this 
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paper, we present in Supplementary Figure 9 results of an experimental investigation of variability in 
estimated DIP rates over a range of mean seeding densities. We treated populations of a BRAF-mutant 
melanoma cell line (SKMEL5) with the BRAF inhibitor PLX4720 (8 µM) for 150h and calculated DIP 
rates based on all data points ≳72h. Four time courses were obtained at each seeding density ranging 
from 312 to 10,000 cells/well (Supplementary Fig. 9a,b). As expected, the variance in the calculated 
DIP rates increases with decreasing seeding density (Supplementary Fig. 9c; Levene’s test25 
p=0.0082). However, the mean values are statistically indistinguishable across seeding densities 
(p=0.47). These results indicate that reliable estimates of DIP rate can be obtained even at low seeding 
densities. 

 
Protocol for generating dose–response curves using DIP rate as the drug effect metric 

 
Needed: 

• Cells with genetically encoded nuclear label (e.g., H2BmCherry). 
• 96-well imaging plates (e.g., BD cat#353219). 
• Automated fluorescence microscope with 96-well plate-compatible stage (e.g., Synentec 

Cellavista, BD Pathway or Molecular Devices ImageXpress). 
• Drugs/compounds of interest. 

 
Method: 

1) Seed cells at ~2,500 cells per well in 96-well imaging plate and incubate overnight in 
environmentally controlled incubator. 

2) Prepare, in complete culture medium, eight four-fold dilutions of each drug (maximum = 4 
µM, minimum = 0.24 nM). If prior knowledge exists of expected EC50 or IC50 (e.g., EC50 >> 
250 nM, EC50 << 1 nM), adjust the range of concentrations accordingly. 

3) Replace medium in imaging plate with drug dilutions and two control wells receiving complete 
medium alone. Time of initial drug addition = 0. 

4) Obtain fluorescence microscopy images at least every 8–12h (hourly for more precise DIP 
rate estimate). 

5) Count cells for each time point and condition using digital image segmentation (e.g., ImageJ, 
Matlab, Python). 

6) Structure data into a matrix containing seven columns: (1) time of measurement, (2) cell 
count, (3) cell line ID, (4) drug name, (5) drug concentration, (6) well number, and (7) date. 

7) Generate DIP rate-based dose–response curve by passing the data structure to dipDRC.r, 
an R function available at github.com/QuLab-VU/DIP_rate_NatMeth2016 (see 
makeDRCexample.r for an example of usage). 
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SUPPLEMENTARY TABLES 
 
Supplementary Table 1 | Glossary of terms 

 
Activity area (AA) The area above a dose–response curve between the upper (E0) and lower 

(Emax) plateaus3; a drug-activity parameter that attempts to quantify both 
potency and efficacy in a single value; the inverse of the AUC. 

Area under the curve 
(AUC) 

The area below a dose–response curve between the upper (E0) plateau and 
a defined lower bound (not necessarily the lower plateau Emax); a drug-
activity parameter that attempts to quantify both potency and efficacy in a 
single value; the inverse of the AA. 

Drug activity General term for the action of a drug on cells; in assays of cellular 
proliferation, refers to the effect that a drug has on cell division and death 
(e.g., slowing the rate of progress through the cell cycle; triggering the 
apoptotic machinery). 

Drug-activity parameter Any quantified value that can be extracted from a dose–response curve 
(e.g., Emax, EC50, GI50, h, IC50, AA, AUC). 

Drug effect The induced response of a population of cells to a drug. 
Drug effect metric A measured value that quantifies drug effect (e.g., cell number after a 

specified period of drug exposure, DIP rate). 
Drug-induced proliferation 

(DIP) rate 
The steady-state rate of expansion or regression of a cell population; 
defined in terms of population doublings (log2-scaled cell numbers) per unit 
time; estimated as the slope of the line on a plot of population doublings vs. 
time after the drug effect has fully stabilized; a proposed metric of 
antiproliferative drug effect in vitro. 

Dynamic metric  A metric whose value is based on measurements at two or more time points 
(e.g., DIP rate, NCI DTP metric). 

E0 The quantified effect in the absence of drug. 
Edrug The quantified effect at a given concentration of drug. 
Emax The quantified effect at saturating drug concentrations; a measure of 

efficacy1. 
EC50 The concentration of drug at which the effect is halfway between the 

minimum (E0) and maximum (Emax) effects; a measure of potency26. 
Efficacy The degree to which a drug can produce a beneficial effect. 

Fractional proliferation The concept that at a given drug concentration, cells experience multiple 
fates (e.g., division, death, entry into quiescence) and that the cell 
population dynamics are a combined effect of all of these events8. 

GI50 The concentration of drug at which the effect is 50% of untreated control 
(E0/2), independent of Emax; technically equivalent to IC50, the term GI50 is 
often used for dose-response curves where Emax < 0 (refs 1 and 11); a 
measure of potency. 

h Hill coefficient; proportional to the slope of the dose–response curve at x = 
EC50; shown to correlate with the degree of heterogeneity intrinsic to a cell 
line1. 

IC50 The concentration of drug at which the effect is 50% relative to untreated 
control (E0/2), independent of Emax; a measure of potency1,4,27,28. 

Potency The amount of drug required to produce a specified effect; a highly potent 
drug is active at low concentrations. 

Response ratio Ratio of the quantified effect at a given drug concentration (Edrug) to the 
effect in the absence of drug (E0); often used as the dependent variable in 
dose–response curves. 

Static metric A metric whose value is based on a measurement at a single time point 
(e.g., cell number after a specified period of drug exposure).  

Time-dependent bias Degree to which the value of a metric varies with the chosen measurement 
time point(s). 

Unbiased metric A metric whose value is independent of the chosen measurement time 
point(s) (e.g., DIP rate). 
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Supplementary Table 2 | Rate parameter values used in this work 
 

Parameter 
Theoretical cell type / drug type 

Fast-proliferating /  
Fast-acting 

Slow-proliferating /  
Fast-acting 

Fast-proliferating /  
Slow-acting 

!!"# − !!"#$! (h-1) 0.06*ln(2) 0.01*ln(2) 0.06*ln(2) 
!!"#∗ − !!"#$!∗ (h-1) –0.03*ln(2) –0.005*ln(2) –0.03*ln(2) 
!!" (M-1 h-1) 1e8† 1e8† 1e5 
!!"" (h-1) 1† 1† 1e–3 

†These values were not set independently but as the ratio koff/kon (see equation S20). 
  

Nature Methods: doi:10.1038/nmeth.3852



SUPPLEMENTARY REFERENCES 
1. Fallahi-Sichani, M., Honarnejad, S., Heiser, L. M., Gray, J. W. & Sorger, P. K. Metrics other than 

potency reveal systematic variation in responses to cancer drugs. Nat. Chem. Biol. 9, 708–714 
(2013). 

2. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer 
cells. 483, 570–575 (2012). 

3. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer 
drug sensitivity. 483, 603–607 (2012). 

4. Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic 
biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–61 (2013). 

5. Daemen, A. et al. Modeling precision treatment of breast cancer. Genome Biol. 14, R110 (2013). 
6. Sharma, S. V., Haber, D. A. & Settleman, J. Cell line-based platforms to evaluate the therapeutic 

efficacy of candidate anticancer agents. Nat Rev Cancer 10, 241–253 (2010). 
7. Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation 

following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008). 
8. Tyson, D. R., Garbett, S. P., Frick, P. L. & Quaranta, V. Fractional proliferation: a method to 

deconvolve cell population dynamics from single-cell data. Nat Methods 9, 923–928 (2012). 
9. Rein, M. The Partial-Equilibrium Approximation in Reacting Flows. Physics of Fluids A - Fluid 

Dynamics 4, 873–886 (1992). 
10. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6, 

813–823 (2006). 
11. Monks, A. et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured 

human tumor cell lines. J Natl Cancer Inst 83, 757–766 (1991). 
12. Heiser, L. M. et al. Integrated analysis of breast cancer cell lines reveals unique signaling 

pathways. Genome Biol. 10, R31 (2009). 
13. Heiser, L. M. et al. Subtype and pathway specific responses to anticancer compounds in breast 

cancer. Proc Natl Acad Sci USA 109, 2724–2729 (2012). 
14. Alley, M. C. et al. Feasibility of Drug Screening with Panels of Human-Tumor Cell-Lines Using a 

Microculture Tetrazolium Assay. Cancer Res 48, 589–601 (1988). 
15. Monga, M. & Sausville, E. A. Developmental therapeutics program at the NCI: molecular target 

and drug discovery process. Leukemia 16, 520–526 (2002). 
16. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors 

through HGF secretion. 487, 500–504 (2012). 
17. Hyndman, R. J. & Koehler, A. B. Another look at measures of forecast accuracy. International 

Journal of Forecasting 22, 679–688 (2006). 
18. Michael, S. et al. A robotic platform for quantitative high-throughput screening. Assay Drug Dev 

Technol 6, 637–657 (2008). 
19. Hinkley, D. V. On the ratio of two correlated normal random variables. Biometrika 56, 635–639 

(1969). 
20. Yang, M. Normal log-normal mixture, leptokurtosis and skewness. Appl. Econ. Lett. 15, 737–742 

(2008). 
21. Lopez, C. F., Muhlich, J. L., Bachman, J. A. & Sorger, P. K. Programming biological models in 

Python using PySB. Mol Syst Biol 9, 646 (2013). 
22. McAdams, H. H. & Arkin, A. It’s a noisy business! Genetic regulation at the nanomolar scale. 

Trends in Genetics 15, 65–69 (1999). 
23. Balázsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: 

from microbes to mammals. Cell 144, 910–925 (2011). 
24. Gillespie, D. T. Markov Processes. (Academic Press, 1991). 
25. Levene, H. Contributions to probability and statistics. (Stanford, Calif., Stanford University Press, 

1960). 
26. Sebaugh, J. L. Guidelines for accurate EC50/IC50 estimation. Pharm Stat 10, 128–134 (2011). 
27. Jang, I. S., Neto, E. C., Guinney, J., Friend, S. H. & Margolin, A. A. Systematic assessment of 

analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput 
63–74 (2014). 

28. Hatzis, C. et al. Enhancing reproducibility in cancer drug screening: how do we move forward? 
Cancer Res 74, 4016–4023 (2014). 

Nature Methods: doi:10.1038/nmeth.3852


	An unbiased metric of antiproliferative drug effect in vitro
	Methods
	ONLINE METHODS
	Dose–response curve fitting.
	A simple two-state model of drug action on an exponentially proliferating cell population.
	Cell lines.
	Time-lapse fluorescence microscopic imaging.
	Other statistical considerations and code availability.
	Publicly available data sets.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Theoretical illustration of bias in dose–response curves based on static metrics of drug effect.
	Figure 2 Experimental illustration of time-dependent bias in dose–response curves for drug-treated cancer cells.
	Figure 3 Bias in potency metrics from publicly available data sets.


